Milyen előnyei vannak ennek a hivatkozási módszernek?
Milyen problémákkal kerül szembe az olvasó a számozásos módszert
alkalmazó dolgozat olvasásakor?
|
II/3.3. Számozásos módszer - tételszámra utalvaA szövegben a hivatkozást szögletes zárójelben lévő szám jelzi. Ez a szám a dolgozat végén szereplő irodalomjegyzék tételszámát ismétli meg, közölve az oldalszámot, ahonnan az idézetünk való. Előnye:
Hátránya:
Formátumok: a szövegben: (tételszám oldalszám) a hivatkozásjegyzékben:
|
Példa ►
|
► "The construction of biorthonormal systems arises in several problems in both physics and mathematics. Recently physicists are interested in e.g. non- Hermitian operators ([24], [15]) and quantum Brownian motion [25], etc.; and biorthogonality is also useful for investigation of "delta estimators" in Lp(Rd, μ) [27], for wavelet expansions [28], or for numerical integration on infinite intervals [11]. There are some further related problems where the main tool is giving biorthonormal systems in Banach spaces. The initial investigations of e.g. R. P. Boas and H. Pollard, A. A. Talalyan, M. Rosenblum, and B. Muckenhoupt resulted the development of e.g. Ap-weights, the theory of multiplicative completion of sets of functions, and estimations of certain norms of Poisson integrals ([2], [23], [19], [16]). Further results were given e.g. on completion ([18], [8], [7]), solving Dirichlet’s problem with respect to boundary functions with singularities ([6], [5]), and constructing A-bases (basis for Abel-summability) in some Banach spaces [4].... |
[1] S. Banach, Th´eorie des Op´erations Lin´aires 23, Chelsea Publ. Co. (New York, 1955). [2] R. P. Boas and H. Pollard, The multiplicative completion of set of functions, Bull. Amer. Math. Soc., 54 (1948), 518-522. [3] K. Gr¨ochenig, Z. Rzesztonik and T. Strohmer, Quantitative estimates for the finite section method, arXiv:math/0610588v1 [math.FA] 19 Oct 2006. [4] ´A. P. Horv´ath, Abel summation in Hermite-type weighted spaces with singularities, East J. Approx., 13 (2007), 357-385. [5] ´A. P. Horv´ath and K. S. Kazarian, The Dirichlet problem in weighted norm (manuscript). [6] K. S. Kazarian, Summability of generalized Fourier series and Dirichlet’s problem in Lp(dμ) and weighted Hp-spaces (p > 1), Analysis Math., 13 (1987), 173-197. [7] K. S. Kazarian, On the multiplicative completion of some incomplete orthonormal systems to bases in Lp, 1 _ p < ∞, Analysis Math., 4 (1978), 37 (Russian). [8] K. S. Kazarian and R. E. Zink, Some ramifications of a theorem of Boas and Pollard concerning the completition of a set of functions in L2, Trans. Amer. Math. Soc., 349 (1997), 4367 -4383. [9] A. L. Levin and D. S. Lubinsky, L∞ Markov and Bernstein inequalities for Freud weights, SIAM J. Math. Anal., 21 (1990), 1065-1082. [10] A. L. Levin and D. S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevai’s conjecture for Freud weights, Constr. Approx., 3 (1992), 463-535...." (Horváth, 2011, p. 78, 116-117) |